Effects of Buoyancy and Forcing on Transitioning and Turbulent Lifted Flames

Joseph W. Nichols, James J. Riley, John C. Kramlich, and George Kosály
University of Washington

June 5, 2003

Supported by the NASA Microgravity Research Division
Outline

• Numerical Method
 – Boundary conditions

• Simulation results
 – Parametric study

• Conclusions
Motivation

- Microgravity Research
 - Eliminate buoyancy → fundamental combustion problem
 - Experiments
 * Expensive
 * Limited parameter space
 - DNS - gravity is easily removed

- Lifted Flame Stabilization
 - Theory historically difficult
 - Achieve better understanding by isolating buoyancy effects

© 2003 Joseph W. Nichols
Round Fuel Jet

Figure 1: Computational Domain
Numerical Method

- Compressible Navier-Stokes with Low Mach Number Approximation (McMurtry et al.)
- Predictor-Corrector scheme (Najm et al.) handles large density ratios
- Cylindrical, staggered mesh
- One step, reversible, Arrhenius-type reaction
Lateral Boundary

- Open to allow entrainment
 - Closed boundary causes recirculation (Boersma et al.)
- No viscous traction (e.g. Gresho)
 - Lateral flow is irrotational

Figure 2: Lateral Surface Element
Outlet Boundary

\[
\frac{\partial \rho u}{\partial t} + u_{\text{max}} \frac{\partial \rho u}{\partial x} = 0 \tag{1}
\]

- Convection velocity
 - \(u_{\text{ave}} \) - insufficient outflow near jet
 - \(u_{\text{max}} \) - represents region of interest

- Mass conservation
 - Evenly distributed correction \(\equiv \) uniform pressure gradient
Free-Slip Collar

Corrective pressure gradient

Computational domain

Inconsistency

No viscous traction

Figure 3: Corner Region

- Corrective pressure gradient inconsistent with no traction

- Collar decouples outlet and lateral boundary conditions

© 2003 Joseph W. Nichols
Simulations

<table>
<thead>
<tr>
<th>Name</th>
<th>Definition</th>
<th>Value(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reynolds</td>
<td>$Re = \frac{\rho_0 u_0 d}{\mu}$</td>
<td>1000</td>
</tr>
<tr>
<td>Froude</td>
<td>$Fr = \frac{u_0}{\sqrt{gd}}$</td>
<td>3.33-∞</td>
</tr>
<tr>
<td>Damköhler</td>
<td>$Da = \frac{Ad}{u_0}$</td>
<td>600-900</td>
</tr>
</tbody>
</table>

Table 1. Nondimensional Parameters

- Sixteen axisymmetric simulations
 - Varied Fr and Da
Results

Figure 4: Density contours, $Da = 800$

© 2003 Joseph W. Nichols
Buoyancy Effects

• Buoyancy produces instability

• Disturbance source
 – Low level forcing from round-off
 – High frequency, small fluctuations in outlet pressure

• Slightly buoyant and non-buoyant flames differ significantly (Bahadori et al.)
 – Perturbations in nature $>>$ low level forcing in simulations
 – 3D instabilities
Liftoff Height vs. Fr^{-1}

- Liftoff height increases as Froude number decreases

© 2003 Joseph W. Nichols
Liftoff Height vs. Da

- Liftoff height increases as Damköhler number decreases

© 2003 Joseph W. Nichols
Conclusions

- Numerical Method
 - Lateral no-viscous-traction
 - Convective outflow with u_{max}
 - Free-slip collar
 * Decouples inconsistent b.c.’s
 * Improves numerical stability

- Simulations Results
 - Buoyant flames sensitive to low level disturbances
 - H increases for both decreasing Fr and decreasing Da