A numerical analysis of the effects of tree architecture on its dynamics

<u>Mathieu Rodriguez^{1,2}</u>, Emmanuel de Langre¹ & Bruno Moulia²

¹Department of Mechanics, LadHyX, Ecole Polytechnique, France ²Group MECA, INRA, Univ. Blaise Pascal, Clermont-Ferrand, France

1

Outline

- Motivations
- Evidence of multimodal dynamics
- Scaling law for tree frequencies
- Prediction of a walnut's natural frequencies
- Conclusion

Motivations

Tree under wind = dynamic interaction.

Mayer (1987) – Gardiner & Quine (2000)

Dynamic characteristics of trees :

1D beam model \longrightarrow 1st mode

Gardiner (1991) - Spatz & Zebrowski (2001)

Additional frequencies in branches movement.

Moore & Maguire (2005) - Sellier et al. (2006)

Spatz et al. (2006)

Influence of the branching system :

– Excitation distributed between modes.

Objective

Example of an idealized branched tree

Generated by auto-similar branching :

Determination of modes

Scaling law for beams frequencies • Case of a beam system : $f \approx \frac{1}{L^2} \sqrt{\frac{EI}{\rho A}} \sim A \approx D^2$

Then
$$f \approx \frac{D}{L^2}$$

• Example :

Scaling law for frequency ratio

$$f pprox D^{-1/3}$$

$$\frac{f_2}{f_1} = \left(\sqrt{\lambda}\right)^{-1/3} = 2^{1/6}$$

10

Analysis of a real tree

• Walnut digitalized by Godin et al. (1999) :

Methodology

Modes frequencies

Modes animations

Prediction of frequencies

Other results :

- Prediction of higher modes.
- General scaling law for other tree geometry, eg.
- Damping.

