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Eleven (11) 3-hour lessons made of course and exercices

• 11, 18, 25 september

• 2, 9, 16 october

• A one-week break devoted to the first homework (HW1)

• 7, 13, 20, 27 november

• 4 december

• 18 december: written 2-hour or 3-hour exam (WE)

Four (4) additional lessons and one additional homework (HW2)
delivered by another Professor

• taking place in January 2026 or February 2026

• A second homework (HW2) bearing on these lessons

• N = HW1/4 +WE/2 +HW2/4 with all HW1, WE and HW2
evaluated using a 0-20 scale



INCOMPRESSIBLE FLOW (constant density)

• Liquid, Hydrodynamics

Cavitation on the blade of a propeller (water, experimental observation)

Production of bubbles, abrasion and visualization by cavitation



• Champagne! Role played by the bubbles? efficient mixing!



COMPRESSIBLE FLOW (non-constant density)

• acoustics, shock waves



COMPRESSIBLE FLOW

• When? “high velocity”

• Experimental observations



Lesson 1

MODELISATION

• Continuous medium. Eulerian description. Material derivative

• General problem for a fluid flow

FUNDAMENTAL GLOBAL CONSERVATION LAW

• Case of a steady domain

• Case of a moving domain. Summary

• Illustrating example: the mass conservation law

APPLICATION OF THE MASS CONSERVATION



CONTINUOUS MEDIUM
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• H : body length scale

• l : molecules free space

• Knudsen number

Kn = l/H

The Knudsen number is not always small!

• If Kn ≪ 1 then continuous medium

• Otherwise, not a continuous medium and statistical physics for a dilute medium



0

Space shuttle with size L

The free path l increases with the shuttle heigth!



CONTINUOUS MEDIUM
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• Here Kn ≪ 1 so that l ≪ L

• Averaged quantities over domains (cubes) with typical

length ǫ taking l ≪ ǫ ≪ L

• Averaged quantity=macroscopic quantity g

• g can be a thermodynamic variable ρ, p, T, ... or the the medium velocity u

• Thermodynamic equilibrium. The medium usual equation-of-state holds

POTENTIAL DISCONTINUITIES AT THE SURFACE Σ(t)

• Σ(t) can move at its own velocity but is INERT



Eulerian description

• physical quantity G : associated to
the macroscopic Eulerian field g(x, t)

0

• g can be the absolute température T, the density ρ, the pressure p,
any Cartesian velocity component ui = u · ei



Eulerian description

• Eulerian velocity field: u(x, t)

• flow streamlines at given time t

dx1
u1(x, t)

=
dx2

u2(x, t)
=

dx3
u3(x, t)

• trajectory of a fluid particule

x = X = Xiei à t0
dxi
dt

= ui(x, t)

• Steady flow?

A flow the Eulerian description of which solely depends on x, i. e.
g(x, t) = g(x) whatever the flow physical quantity G.
Then, streamlines and trajectories are the same lines



Streamlines at given time t for an unsteady flow



Material derivative

(x+ dx, t+ dt)

(x, t)

•

•

G described by its Eulerian field g(x, t)

Tracking in time the same fluid particule: dx = u(x, t)dt

dg

dt
= lim

dt→0

g[x + u(x, t)dt, t + dt]− g(x, t)

dt

dg

dt
=

∂g

∂t
+ grad[g].u



Using orthogonal Cartesian coordinates

grad[g] =
∂g

∂x1
e1 +

∂g

∂x2
e2 +

∂g

∂x3
e3 =

∂g

∂xi
ei

Acceleration?

γ =
du

dt
, γ.ei =

∂ui
∂t

+ ujui,j

Fluid density ρ(x, t)?

dρ

dt
= 0 : incompressible

Not necessarily ρ = cste everywhere!
Homogeneous fluid when ρ = cste everywhere
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GENERAL PROBLEM?

UNKNOWN FIELDS

• Eulerian description of the fluid motion u(x, t)

• Due to the fluid equation of state two variables ρ(x, t), p(x, t)

DATA

• initial conditions at (t0)

• applied fields: body forces, gravity,...

• boundary conditions dependent of the fluid nature/behaviour (see later

• fluid nature described by its equation of state such as p = p(ρ, T )

• fluid flow rheology described by a law (see later)

FUNDAMENTAL PHYSICAL LAWS
TO BE APPLIED TO THE FLOW

• As previously mentioned: local thermodynamic equilibrium

• Fundamental laws of physics and thermodynamics
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General global conservation law for a steady domain

Σ(t)

∂D

nD

Steady closed domain D with boundary ∂D.
Σ(t) is INERT for the quantity F

F(t) =

∫
D
F (x, t)dΩ

Form taken by a global conservation law

δ

δt

∫
D
F (x, t)dΩ =

∫
D
PF (x, t)dΩ−

∫
∂D

(Fu− A).nda



Material derivative of a volume integral?

Closed unsteady domain D(t) moving at the velocity field V∫
D(t)

F (x, t)dΩ,
δ

δtV

∫
D(t)

F (x, t)dΩ?

Σ(t)

∂D(t)

D(t)

V

n

If V and F are piecewise continuous

δ

δtV

∫
D(t)

F (x, t)dΩ =
δ

δt

∫
D
F (x, t)dΩ +

∫
∂D(t)

FV .nda



OBTAINED EQUIVALENT FORMS TAKEN BY A GLOBAL
CONSERVATION LAW

General case of a moving domain
δ

δtV

∫
D(t)

F (x, t)dΩ =

∫
D
PF (x, t)dΩ−

∫
∂D

[F (u− V )− A].nda

Steady domain

δ

δt

∫
D
F (x, t)dΩ =

∫
D
PF (x, t)dΩ−

∫
∂D

(Fu− A).nda

Material domain

d

dt

∫
D(t)

F (x, t)dΩ =

∫
D(t)

PF (x, t)dΩ +

∫
∂D(t)

A.nda

Hold even in presence of a surface of discontinuities Σ(t)
INERT for the quantity F
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GLOBAL MASS CONSERVATION

• System={selected fluid particles}
This system occupies the domain D(t) at time t

• Global mass conservation reads

d

dt

∫
D(t)

ρdΩ = 0

Global mass conservation for a steady domain D reads

δ

δt

∫
D
ρ(x, t)dΩ = −

∫
∂D

ρu.nda



NEXT WEEK

Lesson 2. Thursday 18th september, 9h00-12h15


